2002年6月获得山东师范大学教育技术学专业理学学士学位,2005年6月获得山东师范大学教育技术学理学硕士学位,2014年6月获得北京理工大学计算机应用技术专业工学博士学位。2016年10月至2017年10月赴悉尼科技大学高级分析研究所开展访问研究。
奖励和荣誉: [1] 基于句法分析的词义消歧方法研究. 山东省高等学校优秀科研成果奖(三等奖). 2013.09 [2] 医学图像处理与数据挖掘技术研究. 山东省高等学校优秀科研成果奖(二等奖). 2011.12 [3] 齐鲁工业大学本科教学水平评估先进个人. 2008.05
主要论文:
[1] Wenpeng Lu*, Yuteng Zhang, Shoujin Wang, Heyan Huang, Qian Liu and Sheng Luo. Concept Representation by Learning Explicit and Implicit Concept Couplings[J]. IEEE Intelligent Systems, 2021, 36(1): 6-15. (SCI, 中科院2区)
[2] Wenpeng Lu*, Rui Yu, Shoujin Wang, Ping Jian and Heyan Huang. Sentence Semantic Matching based on 3D CNN for Human-robot Language Interaction[J]. ACM Transactions on Internet Technology, 2021. (CCF B, SCI, accepted)
[3] Rui Yu, Wenpeng Lu*, Huimin Lu, Shoujin Wang, Fangfang Li, Xu Zhang and Jiguo Yu. Sentence Pair Modeling Based on Semantic Feature Map for Human Interaction with IoT Devices[J]. International Journal of Machine Learning and Cybernetics, 2021. (SCI, 中科院2区, Online)
[4] Rui Yu, Wenpeng Lu*, Yifeng Li, Jiguo Yu, Guoqiang Zhang and Xu Zhang. Sentence Semantic Matching with Hierarchical CNN Based on Dimension-augmented Representation. Proceedings of International Joint Conference on Neural Network (IJCNN 2021)[C]. Virtual Event, 2021. (EI, CCF C, accepted)
[5] Pengyu Zhao, Wenpeng Lu*, Yifeng Li, Jiguo Yu, Ping Jian and Xu Zhang. Chinese Semantic Matching with Multi-granularity Alignment and Feature Fusion. Proceedings of International Joint Conference on Neural Network (IJCNN 2021)[C]. Virtual Event, 2021. (EI, CCF C, accepted)
[6] Xu Zhang, Wenpeng Lu*, Yan Pan, et al. Empirical Study on Tangent Loss Function for Classification with Deep Neural Networks[J]. Computers & Electrical Engineering, 2021, 90: 107000. (SCI)
[7] Xu Zhang, Yifeng Li,Wenpeng Lu*, Ping Jian and Guoqiang Zhang. Intra-Correlation Encoding for Chinese Sentence Intention Matching. Proceedings of the 28th International Conference on Computational Linguistics (COLING)[C]. Barcelona, Spain, 2020: 5196-5204. (CCF B)
[8] Wenpeng Lu*, Xu Zhang, Huimin Lu, et al. Deep Hierarchical Encoding Model for Sentence Semantic Matching[J]. Journal of Visual Communication and Image Representation, 2020, 71: 102794. (SCI)
[9] Ruoyu Zhang, Wenpeng Lu*, Shoujin Wang, et al. Chinese Clinical Named Entity Recognition Based on Stacked Neural Network[J]. Concurrency and Computation: Practice and Experience, 2020. (SCI, Online)
[10] Xu Zhang, Wenpeng Lu*, Guoqiang Zhang, et al. Chinese Sentence Semantic Matching Based on Multi-Granularity Fusion Model. Proceedings of the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020)[C]. Singapore, 2020: 246-257. (EI, CCF C)
[11] Yuteng Zhang, Wenpeng Lu*, Weihua Ou, et al. Chinese Medical Question Answer Selection via Hybrid Models Based on CNN and GRU[J]. Multimedia Tools and Applications, 2020(79): 14751-14776. (SCI)
[12] Xu Zhang, Wenpeng Lu*, Fangfang Li, et al. A Deep Neural Architecture for Sentence Semantic Matching[J]. International Journal of Computational Science and Engineering, 2020, 21(4): 574-582. (EI)
[13] Wenpeng Lu*, Fanqing Meng, Shoujin Wang, et al. Graph-based Chinese Word Sense Disambiguation with Multi-knowledge Integration [J]. Computers Materials & Continua , 2019, 61(1): 197-212. (SCI)
[14] Wenpeng Lu*. Word Sense Disambiguation Based on Dependency Constraint Knowledge[J]. Cluster Computing, 2019, 22(s3): S7549–S7557. (SCI)
[15] Zhonghua Liu, Weihua Ou, Wenpeng Lu, et al. Discriminative Feature Extraction Based on Sparse and Low-rank Representation[J]. Neurocomputing, 2019, 362: 129-138. (SCI)
[16] Xu Zhang, Wenpeng Lu*, Fangfang Li, et al. Deep Feature Fusion Model for Sentence Semantic Matching[J]. Computers, Materials & Continua, 2019, 61(2): 601-616. (SCI)
[17] Wenpeng Lu*, HaoWu, Ping Jian, et al. An Empirical Study of Classifier Combination Based Word Sense Disambiguation[J]. IEICE Transactions on Information and Systems, 2018, E101-D(1): 225-233. (SCI)
[18] FanqingMeng, Wenpeng Lu*, Yuteng Zhang, et al. QLUT at SemEval-2017 Task 1: Semantic Textual Similarity Based on Word Embeddings. Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017)[C]. Vancouver, Canada, 2017: 141-144.
[19] 鹿文鹏*, 黄河燕. 基于领域知识的图模型词义消歧方法[J]. 自动化学报, 2014, 40(12): 2836-2850. (EI)
[20] 鹿文鹏*, 黄河燕. 基于依存适配度的知识自动获取词义消歧方法[J]. 软件学报, 2013, 24(10): 2300-2311. (EI)主持项目:
[1] 智能司法公开关键技术研究——多源司法公开信息搜索结果的融合展示,国家重点研发计划子课题 (2018YFC0831704)
[2] 基于非独立同分布学习理论的图模型词义消歧及领域适应方法研究,国家自然科学青年基金项目 (61502259)
[3] Python机器学习实验教学资源开发,教育部产学合作协同育人项目 (201702048078)
[4] 基于依存句法分析的词义消歧方法研究,山东省高等学校科技计划 (J12LN09)
[5] 碳化硅单晶炉控制系统,企业合作项目主要授权发明专利(第一发明人):
[1] 一种融合句子局部上下文与文档领域信息的词义消歧方法 ZL201610033097.5
[2] 一种基于依存约束和知识的名词词义消歧方法和装置 ZL201610489707.2
[3] 一种基于依存约束和知识的动词词义消歧方法和装置 ZL201610496860.8
[4] 一种基于依存约束和知识的形容词词义消歧方法和装置 ZL201610496133.1
[5] 一种基于依存约束和知识的副词词义消歧方法和装置 ZL201610494457.1
[6] 一种基于多重进化矩阵的蛋白质二级结构预测方法 ZL201710150418.4
[7] 一种基于词向量的英汉词义映射方法和装置 ZL201610765658.0
[8] 医疗自动问答方法及装置、存储介质、电子设备 ZL201810939302.3
[9] Method and Device Using Wikipedia Link Structure to Generate Chinese Language Concept Vector 2018388932 澳大利亚标准发明专利
[10] 一种结合中英知识资源的中文词语语义关系识别方法和装置 ZL201710706832.9
[11] 基于多粒度融合模型的中文句子语义智能匹配方法及装置 ZL202010103529.1
[12] 一种基于深度分层编码的智能语义匹配方法和装置 ZL202010103505.6参与项目:
[1] 互联网环境中文言语信息处理与深度计算的基础理论和方法,国家重点基础研究发展计划(973) (2013CB329303)
[2] 基于本体的多策略民汉机器翻译研究,国家自然科学基金重点项目 (61132009)
[3] 基于概率化SC文法的多策略机器翻译研究,国家自然科学青年基金项目 (61201351)
[4] 基于高维数据特征提取的蛋白质二级结构预测,国家自然科学基金面上项目 (61375013)
[5] 基于风险智能感知的社区综合金融云建设及示范应用,山东省重大科技创新工程 (2020CXGC010901)
[6] 纤维断面图像的自动分割与配准技术研究,山东省自然科学基金 (ZR2011FQ038)
[7] 社交网络链路预测方法研究,山东省自然科学基金 (ZR2017MF056)
[8] 基于遗传算法与蒙特卡罗算法的蛋白质折叠研究,山东省高等学校科技计划 (J10LG20)
QQ:8027462E-mail:Luwpeng@163.com